Recitation 2 Median Finding & Randomized Algorithms

Rebecca Lin | Friday, September 13th, 2024

How's everyone doing?

Median Finding

$x \in S$ such that RANK(x) = i, that is, the *i*th smallest element.

8	-1	19	11	12	0	-
-7	-4	-1	0	3	8	,

Given a set *S* of *n* distinct elements and a number $i \in \{1, 2, ..., n\}$, find the element

Bad: If |L| = 0 at each level, then T(n) = T(n -

Good: If |L|, $|G| \le cn$ for some constant c < 1 at each level, then: T(n) = T(cn)

Goal: In O(n) time, pick an x^* that is "*c*-balanced": $\max\{RANK(x^*)\}$

Analysis

G

$$1) + O(n) = O(n^2)$$

$$(n) + O(n) = O(n)$$

$$, n - \operatorname{RANK}(x^*) \} \leq cn$$

SELECT(i, S)

- Divide S into $\frac{n}{5}$ groups of 5 elements each, padded by large numbers, if necessary
- Find the median of each 5-element group by sorting
- Recursively SELECT the median x^* of the $\frac{n}{5}$ group medium as the pivot 3.
- 4. Compute $L = \{y \in S : y < x^*\}$ and G =
- Since so $RANK(x^*) = |L| + 1$: 5.
 - If $RANK(x^*) = i$, then $x = x^*$
 - If $RANK(x^*) > i$, then SELECT(i, L)
 - If $RANK(x^*) < i$, then SELECT(i |L| |L|)

Algorithm

"clever" selection

as before (pg.2)

$$\{y \in S : y > x^*\}$$

SELECT(i, S)

- Divide S into $\frac{n}{5}$ groups of 5 elements each, padded by large numbers, if necessary 1.
- Find the median of each 5-element group by sorting 2.
- Recursively SELECT the median x^* of the $\frac{n}{5}$ group medium as the pivot 3.
- Compute $L = \{y \in S : y < x^*\}$ and G =4.
- Since so $RANK(x^*) = |L| + 1$: 5.
 - If $RANK(x^*) = i$, then $x = x^*$
 - If $RANK(x^*) > i$, then SELECT(i, L)
 - If $RANK(x^*) < i$, then SELECT(i |L| 1, G)

Algorithm

$$\{y \in S : y > x^*\}$$

Claim: x^* is $\frac{7}{10}$ -balanced, that is max{ $|L|, |G|} \leq \frac{7n}{10}$.

Analysis

N 10

n 10

n -

n

Claim: x^* is $\frac{7}{10}$ -balanced, that is max{ $|L|, |G|} \leq \frac{7n}{10}$.

$$|L|+1 \ge \frac{3n}{10} \implies |G| \le \frac{7n}{10}$$
$$|G|+1 \ge \frac{3n}{10} \implies |L| \le \frac{7n}{10}$$

Analysis

Recurrence: $T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n)$

- What if we had chosen groups of $\frac{n}{3}$ elements?
- How about groups of $\frac{n}{7}$ elements?

Analysis

Randomized Algorithms

- Execution not deterministic, but depends on random choices.
- Two types:
 - Las Vegas: Always correct output, typically good runtime
 - Monte Carlo: Always good runtime, typically correct output
- Today: Monte Carlo

Text on randomized algorithms: <u>https://www.cs.ubc.ca/~nickhar/Book1.pdf</u>

Estimating Area

Give a randomized algorithm to estimate A.

Estimating Area **Via Sampling**

Idea: The probability of a random sample landing in the shape is A, so sample n random points and compute the proportion \hat{A} of points in the shape.

Let $X_i = 1$ if point *i* is in the shape and 0, otherwise. Our estimate: $\hat{A} = \frac{X}{X}$ where $X = \sum_{i=1}^{n} X_i$

Claim: \hat{A} is an unbiased estimator, i.e., $\mathbb{E}[\hat{A}] = A$. *Proof.* On the board.

What are possible concerns? How often is \hat{A} actually close to A?

Suppose $A > \frac{1}{10}$ is given. Provide a bound on the number of samples required to

On the board.

ensure the estimate \hat{A} is within $(1 \pm \epsilon)A$ with probability $1 - \delta$ for $0 < \epsilon, \delta < 1$.