Recitation 5 **Minimum Spanning Trees**

Rebecca Lin | Friday, October 4th, 2024

How's everyone doing?

Agenda

MST Overview Prim's Algorithm Kruskal's Algorithm MST Properties MST Practice Problem

Overview

• *T* is a **minimum spanning tree** of a connected weighted graph $G = (V, E, w)$ if its

Definitions:

- A spanning tree T of a graph $G = (V, E)$ is an acyclic subset of G's edges that connects all vertices of *G*
- weight $w(T) = \sum w(e)$ is minimized *e*∈*T*

Overview

General Procedure:

- 1. $T \leftarrow \emptyset$
- 2. while T is not spanning do

Add a "safe" edge e to T such that T remains a subset of some MST

3. **return** *T*

Idea: Greedily select the cheapest edge that connects the tree to a new vertex.

 \circ \circ°_\circ δ° O

Prim's algorithm applied to points in a [Euclidean plane](https://en.wikipedia.org/wiki/Prim)

Procedure:

- 1. Choose an arbitrary starting point $s \in V$
- 2. $T_V \leftarrow \{s\}$
- 3. $T_E \leftarrow \varnothing$
- 4. **while** T_E is not spanning **do**
	- A. Find the lowest-weight edge $e = (u, v)$ such that $u \in T_V$ and $v \notin T_V$
	- B. $T_V \leftarrow T_V \cup \{v\}$
	- C. $T_E \leftarrow T_E \cup \{e\}$
- 5. **return** T_E

Claim: Prim's algorithm always adds safe edges.

"respect" cut

"crosses" cut

"respect" cut

"crosses" cut

Claim: Prim's algorithm always adds safe edges.

We use **CLRS4 Theorem 31.1:** Given

- 1. a connected weighted graph $G = (V, E, w)$;
- 2. a set of edges $A \subseteq E$ belonging to some MST for $G;$
- 3. a cut $(S, V \setminus S)$ of G that respects A; and
- 4. a light edge *e* crossing the cut,

then e is a safe edge for A .

Consider iteration *k*:

- Take $A = T_E$ and the cut to be $A = T_E$ and the cut to be $(T_V, V \backslash T_V)$
- Let $e_k = (u, v)$ be the cheapest edge such that $u \in T_V$ and $e_k = (u, v)$ be the cheapest edge such that $u \in T_V$ and $v \notin T_V$

We apply **CLRS4 Theorem 31.1**:

- 1. G is given as a connected weighted graph
-
- 3. Cut $(T_V, V\backslash T_V)$ resects T_E because all edges in T_E are between vertices in T_V
- 4. By definition, e_k is a light edge crossing the cut

Hence e_k is a safe edge.

2. Assuming only the addition of safe edges to T_E in past iterations, T_E included in some MST for G

Procedure:

- 1. Choose an arbitrary starting point $s \in V$
- 2. $T_V \leftarrow \{s\}$
- 3. $T_E \leftarrow \varnothing$
- 4. **while** T_E is not spanning **do** $O(|V|)$
	-
	- B. $T_V \leftarrow T_V \cup \{v\}$
	- C. $T_E \leftarrow T_E \cup \{e\}$
- 5. **return** T_E

What's the runtime?

Naively, it's $O(|V||E|)$ —how do we improve it?

Kruskal's Algorithm

Idea: Greedily add to the forest a lowest-weight edge that will not form a cycle.

Procedure:

- 1. $T \leftarrow \emptyset$
- 2. **for** $v \in V$ do

MAKE-SET (*v*)

3. **for** $e = (u, v)$ in E, sorted by weight in non-decreasing order **do if** FIND-SET(u) \neq FIND-SET(v) then

 $T \leftarrow T \cup \{e\}$

Kruskal's Algorithm Algorithm

UNION (*u*, *v*)

4. **return** *T*

Properties of MSTs

For the cut $(S, V \setminus S)$, any least-weight edge $e = (u, v)$ with $u \in S$, $v \notin S$ (i.e., a "crossing" edge) must belong to some MST.

We can greedily construct globally optimal solutions by making locally optimal choices.

1. Single Commission Roman Commission - Single Richard Commission and the state of the Single Richard Commission

Theorem [Cut Property]: Let S be some non-empty proper subset of the vertices.

Properties of MSTs

Theorem [Cycle Property]: Consider any cycle C in a graph G. If C contains an edge e whose weight is strictly larger than the weight of every other edge in C , then e cannot belong to any MST.

Properties of MSTs

Theorem [Uniqueness Property]: If a graph has distinct edge weights, then its MST

is unique.

Practice Problem What tunnels should I build?

Our subway is described as a graph $G = (V, E, c)$, where the stations are nodes and each possible tunnel between stations is an edge $e \in E$ with unique cost $c(e) > 0$. We find the cheapest way to connect all stations by computing the (unique) MST T of G .

Part A: What if a new edge $e \notin E$ with cost $c(e)$ is now added? Show that we can obtain the MST T' of the modified graph G' by adding e to T and then deleting the heaviest edge in the cycle created.

Proof. Two steps:

- 1. Only the edges in the set $T'' = T \cup \{e\}$ can be in T'. Why?
- 2. Removing the heaviest edge in the single cycle in T'' yields the MST. Why?

Part B: Say that the new network is now described by $G' = (V \cup \{v'\}, E \cup E', c)$, where v' is a new station, and E' is the set of possible tunnels between the new \overline{E} station and existing ones. We want to find the MST T' of G' given MST T of G in $O(|V|\log|V|)$ time.