Rebecca Lin | October 11th, 2024

Recitation 6 Maximum Flow

How's everyone? How was the quiz?

Overview

Maximum Flow Review Cuts in Flow Networks Ford-Fulkerson Algorithm Practice Problem

Review Flow Network

node $t \in V$, and *capacity* $c(u, v)$ per each edge $(u, v) \in E$, where $c : E \mapsto \mathbb{R}^{\geq 0}$.

A **flow network** $G = (V, E, s, t, c)$ is a directed graph with a *source* node $s \in V$, sink

$$
\sum_{u \in \delta^-(v)} g(u, v) = \sum_{u \in \delta^+(v)} g(v, u)
$$

What is the total flow along an edge?

- Given a flow network, a **gross flow** is a function $g : E \mapsto \mathbb{R}^{\geq 0}$ satisfying:
- 1. Capacity (or feasibility) constraints: "cannot be negative, cannot exceed capacity"
	- For every edge $(u, v) \in E$, $0 \le g(u, v) \le c(u, v)$
- 2. Flow conservation constraints: "flow coming in = flow going out" For every node $v \in V \setminus \{s, t\}, \sum$

- 1. Capacity (feasibility) constraints: For all *u* and $v, f(u, v) \le c(u, v)$
- 2. Flow conservation constraints: For all $u \in V \setminus \{s, t\}$, $\sum f(u, v) = 0$ *v*∈*V*
- 3. Skew symmetric:

For all *u* and v , $f(u, v) = -f(v, u)$

The **value** of a flow f is $\sum f(s, v)$, denoted $|f|$. *v*∈*V*

Maximum Flow Problem: Given a flow network , fined a flow with maximum value. $G = (V, E, s, t, c)$

What is the total flow between two vertices?

A **net flow** is a function $f: V \times V \mapsto \mathbb{R}^{\geq 0}$ satisfying:

Implicit Summation Notation Definitions

 $\textbf{Notation:} \text{ For } X, Y \subseteq V:$ Let $f(u, X) = \sum f(u, v)$ "the total flow from node u to set X" Ex: Flow conversation: $f(u, V) = 0$ for all $u \in V \setminus \{s, t\}$ Ex: $|f| = f(s, V)$ Let $f(X, Y) = \sum_{x} f(x, y)$ "the total flow from the set X to the set Y" *v*∈*X x*∈*X y*∈*Y* $f(x, y)$ *"the total flow from the set X to the set Y*

Properties:

- 1. For every $X \subseteq V$, $f(X, X) = 0$
- 2. For every $X, Y \subseteq V, f(X, Y) = -f(Y, X)$
- 3. For every X, $Y, Z \subseteq V$, with X and Y disjoint, $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$

Implicit Summation Notation Properties

Implicit Summation Notation Exercise

Claim: $|f| = f(V, t)$ *Proof.* $= f(V, V) - f(V \setminus \{s\}, V)$ (property 3) (property 1 & 2) $= f(V, t) + f(V, V \setminus \{s, t\})$ (property 3) $|f| = f(s, V)$ $= f(V, V \setminus \{s\})$ $= f(V, t)$

Cuts in Flow Networks Definitions

- Given a flow f, the net flow $f(S)$ across the cut from S to T is $f(S, T)$
- The capacity of the cut is $c(S) = c(S, V \setminus S)$

An s-t cut of a flow network G is a partitioning of its vertices V into two non-empty subsets S and $T = V \setminus S$ such that S contains the source s and T contains the target t.

$S = \{s, a, b, c, d, g\}$

 $c(S) = 15$ $f(S) = 10$

 $S = \{s, b\}$

 $c(S) = 10$ $f(S) = 10$

Where can we push more flow?

augmenting path, with bottleneck capcity 10.

Max-Flow Min-Cut

are equivalent:

- 1. $|f| = c(S)$ for some *s*-*t* cut $(S, V \setminus S)$
- 2. f is a maximum flow
- 3. *f* admits no augmenting paths

Max-Flow Min-Cut Theorem: Suppose f is a flow in a flow network G. The following

Ford-Fulkerson

- Given $G = (V, E, s, t, c)$:
- 1. $f \leftarrow 0$
- 2. **while** there exists an augomenting path P in G_f do Augment flow f along P with its bottleneck capacity $c_f(P) = \min_{e \in P}$ *e*∈*P cf*(*e*)
- 3. **return** *f*

Flow Integrality Theorem

of the maximum flow is an integer as well. Fruthermore, there exists an integral maximum flow *f* such that $f(u, v)$ is an integer for any $u, v \in V$.

Flow Integrality Theorem: If the capacities of all edges are integers, then the value

3.2 Edmonds-Karp

EDMONDS-KARP $(G = (V, E, s, t, c))$

- 1: Initialize flow f to 0
- 2: while there is an augmenting path in G_f do
- Find such a path P using BFS $3:$
- $4:$
- 5: return f

Augment flow f along P with its bottleneck capacity $c_f(P) = \min_{e \in P} c_f(e)$