Recitation 8 Linear Programming II & Game Theory

Rebecca Lin 10/18/2024

Recall Duality Theorems

Weak Duality:

The objective value corresponding to any feasible solution of the primal maximization LP is *upper bounded* by the objective value corresponding to any feasible solution of the dual minimization LP

Strong Duality:

The optimal objective value of the primal LP *equals* the optimal value of the dual LP if either one of them is bounded

Theorem: If the primal and dual LPs are both feasible, then both programs are bounded and strong duality holds.

Worked Example

- Both LPs are feasible. Why?
- By strong duality, dual LP has the same optimal value as the primal. What is this value? Where does it occur?

Note: The coefficients the yield the dual (or primal) optimal solution gives a certificate of optimality for the primal (or dual) solution

$(a^*, b^*, c^*) = (1, 0, 1)$

Primal

- $1 \cdot y \leq 1 \cdot 4$ $0 \cdot x < 0 \cdot 5$ $1 \cdot (x + y) \le 1 \cdot 8$
- $\implies x + 2y \le 12$ \implies 12 is optimal

Complementary Slackness Definition

Theorem: Let \tilde{x} and \tilde{y} be feasible solutions to the primal and dual, respectively.

- For each primal variable \tilde{x}_i , either $\tilde{x}_i = 0$, the corresponding dual constraint is tight, or both.
- For each dual variable \tilde{y}_i , either $\tilde{y}_i = 0$, the corresponding primal constraint is tight, or both.

Then \tilde{x} and \tilde{y} are optimal solution if and only if **complementary slackness** holds:

Complementary Slackness Illustrating Example

Let us verify the optimality of solutions $(x^*, y^*) = (4, 4)$ and $(a^*, b^*, c^*) = (1, 0, 1)$ for the worked example:

- primal variable $x^* = 4 \neq 0$, but dual constraint $b + c \geq 1$ is tight since $b^* + c^* = 1$
- primal variable $y^* = 4 \neq 0$, but dual constraint $a + c \geq 2$ is tight since $a^* + c^* = 2$
- dual variable $a^* = 1 \neq 0$, but primal constraint $y \leq 4$ is tight as $y^* = 4$
- primal constraint $x \leq 5$ is not tight as $x^* = 4$, but dual variable $b^* = 0$
- dual variable $c^* = 1 \neq 0$, but primal constraint $x + y \leq 8$ is tight as $x^* + y^* = 8$

Primal		Dual	
max	x + 2y	min	4a + 5b + 8a
subject to	$y \le 4$	subject to	b + c
	$x \leq 5$		a + c
	$x + y \le 8$		a, b, c

Complementary Slackness Proof Sketch

- By strong duality, $\vec{c}^T \vec{\tilde{x}} = \vec{b}^T \vec{\tilde{y}}$ if and only if $\vec{\tilde{x}}$ and $\vec{\tilde{y}}$ are optimal
- Rearranging, we have $\vec{\tilde{x}}^T (A^T \vec{\tilde{y}} \vec{c}) = 0$ and $(A \vec{\tilde{x}} b)^T \vec{\tilde{y}} = 0$
- Let's intepret:

 - If the slack in the dual constraint $(A_i^T \vec{\tilde{y}} c_i) \neq 0$, then $\tilde{x}_i = 0$

Repeat for dual variables and primal constraints!

• If any primal variable $\tilde{x}_i \neq 0$, then $(A^i)^T \vec{\tilde{y}} - c_i = 0$ (i.e., $(A^i)^T \vec{\tilde{y}} = c_i$ so no slack), where A^i is column i of A, so the dual constraint for \tilde{x}_i is tight