Setup input: sequence of requests R = r, rz, ..., na "myopic" online algorithm - processes requests one at a time w/o knowledge of subsequent requests optimal offline algorithm \longrightarrow knows entire sequence from the get go
COPT) and processes each request optimally wl this knowledge competitive analysis algorithm A is x -wompetitive if for any input K C_ACR \leq (R) C_{OPT} CR) cost of A on R and cost of PPT on R competitive ratio $($ we want α to be small!) illustrating example : rent or buy ? context: renting ski gear $r = 50 per session (b = 10r)
context: renting ski gear $r = 50 per session (b = 10r) renting ski gear Γ = \$50 pe
buying ski gear 6 = \$500
ski \leq 10 times \rightarrow rent gear
ski \leq 10 times \rightarrow buy gear s_{k} = 10 times \rightarrow ferm gear || but: not sure how many times I'll ski! \sqrt{X} \times 10 I as I ferr or kuy my geler:
Strategy 1: buy at start - + terrible if I ski only one is W ski only one
aaaaay better)
dun silting a strategy 1: buy at stant - > temilde if I ski only one
(venting is waaaaay better)
strateay 2: always rent! - > bad if O I ond up siting a TON (k>>10)

1

 (2) $strategy$ 3: rent first $Tblr7 - 1 = 9$ times and buy on the next visit after that ("better-late-than-never" strategy) claim: this strategy is 2-competitive! : this strategy is 2-competitive!
if I end up skiing k $\le \Gamma$ bln 7-1 = 9 times, $\frac{1}{t}$ I and up skiing $k \le \Gamma b r$
then I am optimal $\frac{1}{t}$ woohoo! then I am optimal - wookoo!
if k > [b|r]-1 = 9, then I should have bought gear if $k > \lceil b|r \rceil$ -1 = 9, then I
right at the start ; OPT = b. if K > 1 D|r|-1 = 9, then I should have bought of
night of the start; OPT = b.
worst case: I buy on my That it's and I never^dski again $x = \frac{r(Tb/rT^2 + b)}{r}$ \leftarrow my vost $<$ 2 (given b is mutiple of τ) a cytier of a mariple of ")
claim: this strategy gives the best possible competitive ratio worked example : competitive scheduling Setup : aidentical machines ^M, Mn that can process zdog $\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{m_{\text{P}}}-\frac{m_{\text{P}}}{$ sequence of
once (t = O) Ji has processing time Pi

goal: schedule jobs on machine s.t. the time at which the last fob finishes (i.e., the "makespan") is minimized

our strategy : always assign incoming job to the least loaded machine

claim: this strategy is 2-competitive

notation:

- · TGCOT) makespan of our greedy approach
TOPT (DT) makespan of the optimal schedule
-
- TOPT UD) makespan of the optimal schedule
Pmax provessing time of the langest fob
Li time when some machine finishes processing time of the largest fob
- time when s<u>ome</u> machine finishes
	- $G.e.,$ all other machines run for $\geq t_1$ time)

observations : $\frac{1}{2}$ (B1) Top $_T$ (O) \geq p max "total time \geq time required for the longest job" · $(B1)$ TopT $(U) \geq p_{\text{max}}$ "total time 2 time vequived for the longest job"
(B2) TopT $(D^{\star}) \geq \frac{1}{n} \sum_{i=1}^{k} p_i$ "best possible schedule = distrube nont completely" evenly across machines t=O t⁼ t =T $G(\mathfrak{w})$ $\frac{1}{2}$

worked $(n \cdot t) \leq (\sum_{i=1}^{k} p_i)$ total working \pm total "novt" over interval \Box o, \pm , \Box : $\begin{array}{rcl}\n & \text{if we required for} \\
 & \text{if we required for} \\
 & \text{if } t = 0 \\
 & \text{if } t = 0\n \end{array}$ $\begin{array}{c} \n\cdot & \downarrow \\
\hline\n\cdot & \downarrow\n\end{array}$ bservations:

(Bd) Torr(D) 2 Dmax "total time 2 three required for the long

(Bd) Torr(D) 2 $\frac{k}{n}$ $\frac{k}{i_{n}}$ Pi "best possible stratule work to contract

total "nont" over interval $\text{Loi } t_1$: Mi

total "nont" over i · \leftarrow \bullet \Rightarrow t_1 t_2 Let \cdot tz = \top G(σ) – t_{1} "the amount of extra nork done by the busiest machine compared to the least busy one " · busiest ma
the : start time of LAST job $\underline{\text{u}a\text{i}w}: t_{L} \leq t_{1}$ by contradiction: suppose $t \geq t_1$. greedy approach assigns LAST to least busy machine :
- all machines busy until to \Rightarrow greedy approach assigns LAST
 \Rightarrow all machines busy until t_1
violates definition of t_1 putting it all together : $putting$ it all together:
PLAST = $T_{G_1}(\sigma) - t_1 \geq T_{G_1}(\sigma) - t_1 = t_2$ ↑ by claim by daim
Since PLAST \leq Pmax, \pm z \leq Pmax $T_{G_1}(\sigma) = t_1 + t_2$ $\leq \frac{1}{n} \sum_{i=1}^{k} p_i +$ $Pmax$ \leq 2TopT (\overline{U}) $t_{2} \leq$
 $\frac{1}{5} \sum_{i=1}^{k} p$ Pmax 2Topr(DT)
as desi<mark>red</mark>. \leq Top (T) \leq Top (T)

 $\text{coeff}_{\text{Diff}}$, I (B1) I (B2) \blacksquare

3

worked example: LRU paging

least-recently-used: cache wl k slots stores the most recently (LRU) "requested k pages hit if user requests for a page in the cache, fault, Horerwise ا ۱ \sum_{1}^{11} claim : LRU is k-competitive LRU is k-competitive
Ci.e., OPT faults 21 times eveny time LRU faults k times) Key insight: Cpigeonhole principle)

平

LRU has k faults ⁱ - $\overset{\bigcup}{\implies}$ U has k fants
=> 2 k+1 distinct pages requested
=> OPT has at least 1 fault