Probability Review Part 1: Basic Theory

Rebecca Lin | Sunday, September 8th, 2024

Warmup

Example: Flip two "fair" 4-sided dice. How likely are they to sum to 5? **Solution:** Let's write down all the possible outcomes.

	2nd dice is 1	2nd dice is 2	2nd dice is 3	2nd dice is 4
1st dice is 1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
1st dice is 2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
1st dice is 4	(3, 1)	(3, 2)	(3, 3)	(3, 4)
1st dice is 4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

16 possible outcomes, 4 of them sum to 5

Definitions

Definition: The set of all possible outcomes is called the sample space (Ω). Ex. A fair dice: $\Omega = \{\text{heads, tails}\}$ The phrase "their sum is 5" servers to single out some outcomes of Ω **Definition:** A subset E of Ω is called an event. Ex. Warmup example: $E = \{(1,4), (2,3), (3,2), (4,1)\}$

- Ex. Warmup example: $\Omega = \{1, 2, 3, 4\}^2 = \{(a, b) : a, b \in \{1, 2, 3, 4\}\}, |\Omega| = 16$

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd toss is tails" = {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is NOT tails" = {HHH, HTH, THH, TTH}

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd toss is tails" = {HHT, HTT, THT, TTT}$
- $\overline{E} = "$ 3rd toss is not tails" = {HHH, HTH, THH, TTH}

Ω

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd toss is tails" = {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}
- $F = "exactly one toss is heads" = {HTT, THT, TTH}$

HH, HTT, THT, TTH, TTT} THT, TTT} TH, THH, TTH} FT. THT. TTH}

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd toss is tails" = {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}
- $F = "exactly one toss is heads" = {HTT, THT, TTH}$
- $G = "3rd \text{ toss is tails and exactly one toss is heads"} = E \cap F = \{HTT, THT\}$

 $A \cap B = \emptyset$

A and B cannot occur simultaneously—they are called **disjoint** or **mutually exclusive** $B \subset A$ if *B* occurs then *A*

must occur

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd toss is tails" = {HHT, HTT, THT, TTT}$
- $\overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}$
- $F = "exactly one toss is heads" = {HTT, THT, TTH}$
- $G = [3rd \text{ toss is tails and exactly one toss is heads}] = E \cap F = \{HTT, THT\}$
- H = "3rd toss is tails or exactly one toss is heads" $= E \cup F = \{HHT, HTT, THT, TTH, TTT\}$

Probability Definition

Definition: A probability is a way of assigning values $\Pr[E]$ to each event $E \subseteq \Omega$ such that the following axioms hold:

- $0 \leq \Pr[E] \leq 1$ for all events $E \subseteq \Omega$ 1.
- 2. $\Pr[\Omega] = 1$
- 3.

Probability Recall: Warmup Example

	2nd dice is 1	2 n
1st dice is 1	(1, 1)	
1st dice is 2	(2, 1)	
1st dice is 4	(3, 1)	
1st dice is 4	(4, 1)	

Probability Recall: Warmup Example

Probability **Example: Uniform Probability**

Suppose Ω is finite. Set $\Pr[E] = \frac{|E|}{|\Omega|}$ for all events *E*.

Let's check the axioms:

1.
$$E \subseteq \Omega$$
, so $0 \le \frac{|E|}{|\Omega|} \le 1$
2. $\Pr[\Omega] = \frac{|\Omega|}{|\Omega|} = 1$
3. $\Pr\left[\bigcup_{i} E_{i}\right] = \frac{|\sum_{i} E_{i}|}{|\Omega|} = \frac{\sum_{i} |E_{i}|}{|\Omega|}$

Probability **Example: Uniform Probability**

Suppose Ω is finite. Set $\Pr[E] = \frac{|E|}{|\Omega|}$ for all events *E*.

Let's check the axioms:

✓ 1. E ⊆ Ω, so 0 ≤

$$\frac{|E|}{|\Omega|} ≤ 1$$

✓ 2. Pr[Ω] = $\frac{|Ω|}{|Ω|} = 1$

✓ 3. Pr $\left[\bigcup_{i} E_{i}\right] = \frac{|\sum_{i} E_{i}|}{|\Omega|} = \frac{\sum_{i} |E_{i}|}{|\Omega|}$

Law of Total Probability On the Board

Conditional Probability Intuition

Idea: We're interested in event *A*. What if someone tells us that event *B* occurred. What does this tell us about *A*?

Ex. Rolling two dice:

- A = "their sum is 3"
- B = "1st dice is 4"
- $\Pr[A \text{ given } B] = \Pr[A | B] = 0$

Conditional Probability Intuition

knowing that B occurs reduces the likelihood of A occurring

if *B* occurs, then *A* cannot occur

given that *B* occurs, it's more likely for *A* to occur

if *B* occurs, then *A* must occur

Conditional Probability Definition

Definition: Let *A* and *B* be two events. Suppose Pr[B] > 0. Then

 $\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

"the conditional probability of A given that B occurs" or "the probability of A given B"

Conditional Probability Definition

Definition: Let *A* and *B* be two events. Suppose Pr[B] > 0. Then

$\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

Pr[*B*] becomes the new sample space, so we normalize by it

"the conditional probability of A given that B occurs" or "the probability of A given B"

Conditional Probability Definition

Definition: Let A and B be two events. Suppose Pr[B] > 0. Then

 $\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

Pr[B] becomes the new sample space, so we normalize by it

Bayes' Rule:

 $\Pr[A \mid B] = \cdot$

"the conditional probability of A given that B occurs" or "the probability of A given B"

Independence

Idea: *B* has nothing to do with *A*, i.e., $\Pr[A] = \Pr[A | B]$ **Definition:** *A* and *B* are **independent** if $\Pr[A \cap B] = \Pr[A]\Pr[B]$ *Because:* $\Pr[A] = \Pr[A | B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

Question: Suppose we roll two dice. Which of the following events are independent?

- A. "1st dice is 1"
- B. "2nd dice is 1"
- C. "sum is 3"
- D. "sum is 7"

Union Bound

Warmup: $A_1, A_2 \subseteq \Omega$ $\Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2] - \Pr[A_1 \cap A_2] \leq \Pr[A_1] + \Pr[A_2]$

Union Bound

Warmup: $A_1, A_2 \subseteq \Omega$ $\Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2] + \Pr[A_1 \cap A_2] \le \Pr[A_1] + \Pr[A_2]$

tight when A_1 and A_2 are disjoint

Union Bound

Warmup: $A_1, A_2 \subseteq \Omega$ $\Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2] + \Pr[A_1 \cap A_2]$

tight wh

Now let's generalize:

Definition (Union Bound): Given A_1, A_2 , $Pr[A_1 \cup A_2 \cup A_3]$

$$, \dots, A_n \subseteq \Omega,$$
$$\dots A_n] \le \sum_{i=1}^n \Pr[A_i]$$

Union Bound Application

Problem: The probability that it rains on any given day it at most 0.01. Bound the probability that at it rains at least once over the next two weeks.

Solution: Let A_i be the probability that it rains on day *i* for i = 1, ..., 14. Pr[rains at least once] = Pr[$A_1 \cap A_2 \cap ... \cap A_{14}$] $\leq \sum_{i=1}^{14} A_i = \sum_{i=1}^{14} 0.01 = 0.14$ i=1 i=1

Random Variables On the Board

Expectation

Definition: Given a discrete-valued rand x_1, \ldots, x_n , its **expectation** is defined as $\mathbb{E}[X] = \sum_{n=1}^{n}$

Definition: Given a discrete-valued random variables *X* taking on possible values

Expectation Recall: Warmup Example

Expectation

Linearity of Expectation: Given randor

m variables
$$X_1, ..., X_n$$
 and $X = \sum_{i=1}^n X_i$, we have

$$\sum_{i=1}^n X_i = \sum_{i=1}^n \mathbb{E}[X_i]$$
These variables need not be independent

Multiplicity of Expectation Under Independence: If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Expectation Example: On the Board

Idea: Measures how far the random variable is from its expected value. **Definition:**

random variables X_1, \ldots, X_n ,

 $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]$

Variance

- $\operatorname{Var}[X] = \mathbb{E}\left[(X \mathbb{E}[X])^2 \right]$
- Linearity of Variance Under Pairwise Independence: Given pairwise independent

$$|X_i| = \sum_{i=1}^n \operatorname{Var}\left[X_i\right]$$

Variance Examples: On the Board

More Examples On the Board