Rebecca Lin | Sunday, September 8th, 2024

Probability Review Part 1: Basic Theory

Warmup

Example: Flip two "fair" 4-sided dice. How likely are they to sum to 5? **Solution:** Let's write down all the possible outcomes.

16 possible outcomes, **4** of them sum to 5

Definitions

Definition: The set of all possible outcomes is called the **sample space** (Ω) . Ex. A fair dice: $\Omega = \{heads, tails\}$ The phrase "their sum is 5 " servers to single out some outcomes of Ω **Definition:** A subset E of Ω is called an event. Ex. Warmup example: $E = \{(1,4), (2,3), (3,2), (4,1)\}\$

- Ex. Warmup example: $\Omega = \{1,2,3,4\}^2 = \{(a,b): a,b \in \{1,2,3,4\}\}, |\Omega| = 16$
	-
	-

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd$ toss is tails" $= {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is NOT tails" = {HHH, HTH, THH, TTH}

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd$ toss is tails" $= {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}

Ω

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd$ toss is tails" $= {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}
- $F =$ "exactly one toss is heads" = $\{HTT, THT, TTH\}$

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd$ toss is tails" $= {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}
- $F =$ "exactly one toss is heads" = $\{HTT, THT, TTH\}$
- $G = "3rd$ toss is tails and exactly one toss is heads" = $E \cap F = \{HTT, THT\}$

 A and B cannot occur simultaneously—they are called **disjoint** or **mutually exclusive**

if B occurs then A *B* ⊂ *A*

 $A \cap B = \varnothing$

must occur

- Toss a fair coin 3 times: $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- $E = "3rd$ toss is tails" $= {HHT, HTT, THT, TTT}$
- \overline{E} = "3rd toss is not tails" = {HHH, HTH, THH, TTH}
- $F =$ "exactly one toss is heads" = $\{HTT, THT, TTH\}$
- $G = "3rd$ toss is tails and exactly one toss is heads" = $E \cap F = \{HTT, THT\}$
- $H = "3$ rd toss is tails or exactly one toss is heads" = $E \cup F = \{ HHT, HTT, THT, TTH, TTT \}$

Definition: A **probability** is a way of assigning values $Pr[E]$ to each event $E \subseteq \Omega$ such that the following axioms hold:

- 1. $0 \leq Pr[E] \leq 1$ for all events $E \subseteq \Omega$
- 2. $Pr[\Omega] = 1$
- 3. For any pairwise disjoint sets $E_1, E_2, ..., Pr \cup$

Probability Definition

Probability Recall: Warmup Example

Probability Recall: Warmup Example

Suppose Ω is finite. Set $Pr[E] = \frac{1}{|D|}$ for all events E. |*E*| |Ω|

Let's check the axioms:

E

Probability Example: Uniform Probability

1.
$$
E \subseteq \Omega
$$
, so $0 \le \frac{|E|}{|\Omega|} \le 1$
\n2. $Pr[\Omega] = \frac{|\Omega|}{|\Omega|} = 1$
\n3. $Pr \left[\bigcup_i E_i \right] = \frac{|\sum_i E_i|}{|\Omega|} = \frac{\sum_i |E_i|}{|\Omega|}$

Suppose Ω is finite. Set $Pr[E] = \frac{1}{|D|}$ for all events E. |*E*| |Ω|

Let's check the axioms:

E

Probability Example: Uniform Probability

$$
\blacktriangleright \text{ 1. } E \subseteq \Omega, \text{ so } 0 \le \frac{|E|}{|\Omega|} \le 1
$$
\n
$$
\blacktriangleright \text{ 2. } Pr[\Omega] = \frac{|\Omega|}{|\Omega|} = 1
$$
\n
$$
\blacktriangleright \text{ 3. } Pr \left[\bigcup_i E_i \right] = \frac{|\sum_i E_i|}{|\Omega|} = \frac{\sum_i |E_i|}{|\Omega|}
$$

Law of Total Probability **On the Board**

Conditional Probability Intuition

Idea: We're interested in event A. What if someone tells us that event B occurred. What does this this tell us about A ?

Ex. Rolling two dice:

- $A =$ "their sum is 3 "
- $B =$ "1st dice is 4 "
- $Pr[A \text{ given } B] = Pr[A | B] = 0$

Conditional Probability Intuition

knowing that *B* occurs reduces the likelihood of *A* occurring

given that B occurs, it's more likely for *A* to occur

if B occurs, then A must occur

if B occurs, then A cannot occur $Pr[A|B] =$ Pr[*A* ∩ *B*] Pr[*B*]

Conditional Probability Definition

"the conditional probability of A given that B occurs" or "the probability of A given B "

Definition: Let *A* and *B* be two events. Suppose $Pr[B] > 0$. Then

Conditional Probability Definition

Definition: Let *A* and *B* be two events. Suppose $Pr[B] > 0$. Then

$Pr[A|B] =$

Pr[*B*] becomes the new sample space, so we normalize by it

"the conditional probability of A given that B occurs" or "the probability of A given B "

Pr[*A* ∩ *B*]

Pr[*B*]

Conditional Probability Definition

Definition: Let *A* and *B* be two events. Suppose $Pr[B] > 0$. Then

 $Pr[A|B] =$

"the conditional probability of A given that B occurs" or "the probability of A given B "

Pr[*A* ∩ *B*]

Pr[*B*]

Bayes' Rule: Pr[*A*|*B*] =

Pr[*B*] becomes the new sample space, so we normalize by it

Independence

Question: Suppose we roll two dice. Which of the following events are independent?

Idea: *B* has nothing to do with *A*, i.e., $Pr[A] = Pr[A|B]$ **Definition:** A and B are **independent** if $Pr[A \cap B] = Pr[A]Pr[B]$ $Because: Pr[A] = Pr[A | B] =$ Pr[*A* ∩ *B*] Pr[*B*]

- A. "1st dice is 1"
- B. "2nd dice is 1"
- C. "sum is 3"
- D. "sum is 7"

Union Bound

Warmup: A_1 , $A_2 \subseteq \Omega$ $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2] - Pr[A_1 \cap A_2] \le Pr[A_1] + Pr[A_2]$

Union Bound

Warmup: A_1 , $A_2 \subseteq \Omega$ $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2] + Pr[A_1 \cap A_2] \le Pr[A_1] + Pr[A_2]$

tight when A_1 and A_2 are disjoint

Union Bound

Warmup: A_1 , $A_2 \subseteq \Omega$ $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2] + Pr[A_1 \cap A_2] \le Pr[A_1] + Pr[A_2]$

tight wh

Now let's generalize:

Definition (Union Bound): Given A_1 , A_2 . $Pr[A_1 \cup A_2 \cup$

$$
A_2 J \le Pr[A_1] + Pr[A_2]
$$

then A_1 and A_2 are disjoint

$$
..., A_n \subseteq \Omega,
$$

...A_n] $\leq \sum_{i=1}^n \Pr[A_i]$

Problem: The probability that it rains on any given day it at most 0.01. Bound the probability that at it rains at least once over the next two weeks.

Solution: Let A_i be the probability that it rains on day *i* for $i = 1, \ldots, 14$. Pr[rains at least once] = $Pr[A_1 \cap A_2 \cap ... \cap A_{14}] \leq$ ⏟ *u*.*b*. 14 ∑ *i*=1 *i*=1 $A_i =$ 14 ∑ $0.01 = 0.14$

Union Bound Application

Random Variables **On the Board**

Expectation

 x_1, \ldots, x_n , its expectation is defined as

Definition: Given a discrete-valued random variables X taking on possible values

Expectation Recall: Warmup Example

Expectation

Linearity of Expectation: Given random variables
$$
X_1, ..., X_n
$$
 and $X = \sum_{i=1}^{n} X_i$, we have
\n
$$
\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]
$$
\nThese variables need not be independent!

Multiplicity of Expectation Under Independence: If X and Y are independent, then $E[XY] = E[X]E[Y]$

Expectation **Example: On the Board**

Variance

Idea: Measures how far the random variable is from its expected value. Definition:

random variables X_1, \ldots, X_n ,

 $Var\left[\sum_{i=1}^{n}X_i\right]=\sum_{i=1}^{n}$

- $Var[X] = E[(X E[X])]$ 2 \rfloor
- **Linearity of Variance Under Pairwise Independence:** Given pairwise independent

$$
I_i = \sum_{i=1}^n \text{Var}\left[X_i\right]
$$

Variance **Examples: On the Board**

More Examples **On the Board**