
1

Recitation 3 : Competitive Analysis

Setup

input : sequence of requests R = r
, re, .

. . I
"Myopic"

online algorithm ·

processes requests one at a time who

knowledge of subsequent requests
optimal
offline algorithm · knows entire sequence from the get go
COPT) and processes each request optimally w

this knowledge

competitive analysis
algorithmA is X competitive if for any input R

CACR) < x COPTCR)
cost of A on R ↑ costof OPT on R

competitive ratio
are want X to be small !)

illustrating example : rent or buy ?

context: renting ski gear - = $50 per session (b = yor)
buying ski gear b = $500

ski < 10 timeso rent gear
ski < 10 times · buy gear
but : not sure how many times I'll ski!

r?I do I rent or buy my gea
X = 10

Strategy 1 : buy at start : terrible if I ski only one
is Waaaaay better)

Strategy 2 : always rent ! CentingE end up skiing a TON (K1

Z

strategy 3 : rent first Tb/r7-1 = 9 times and buy on the next
visit after that ("better-late-than-never" Cstrategy

claim : this strategy is 2-competitive !mm

if I end up skiing k < TbIrT - 1 = 9 times ,
then I am optimal Woohoo !

if > TbIrT-1 = 9
,
then I should have bought gear

right at the start ; OPT = b.

worst case : I buy on my TbIr7th visit and I
never ski again
r(TbIrT-1) + b : my cost

x =
r & OPT cost

< 2 (given b is multiple of r(

claim Y this Strategy gives the best possible competitive ratiom

(of all deterministic algorithms)

worked example : competitive scheduling

Setup :a identical machines M , Mn that can process
jobs

input : sequence of jobs O = J1. . . .,
Ik arriving all at

once (t = 0)

Ji has processing time Pi

goal : schedule jobs on machine sit. the time at which
the last gob finishes (i. .e ., the "makespan") is minimized

our strategy : always assign incoming job to the least
loaded machine

claim : this strategy is 2-competitive

notation :

· TGco1 makespan of our greedy approach
*

· TOPTLO) makespan of t optimal schedulene
·

pmax processing time of the longest job
· tr time when some machine finishes

ci.e
.,
all other machines run for It , time (

3

observations :

(B1) ToPT (0) <Pmax "total time I time required for the longest job"

· (B2) TOPT(O)= Pi
i

best possible schedule =
distrube work completely

"

evenly across machines

t= O t= TG(t)

work

total "work" over interval [o , t ,]: itotal - I

uptot n . t
, 1 pi talworkome

i and so ti < I Pi : ii = 1
i ·

C

-

> 3
:

ti zz
Let
· tz = TGCO) - to "the amount of extra work done by the

busiest machine compared to the least busy one
"

· ti : start time of LAST job

claim : IL I E1

! by
contradiction : suppose -L > to

greedy approach assigns LAST to least busy machine
- all machines busy until to

i violates definition of to

putting it all together :

PLAST = TGCT) - t = TG20) - t = tz
↑

by claim
Since PLAST < Pmax , tz = PmaxiTact = t +t & Di + Pani E ITOPTCT)

u
-

as desired.
"total <TopTCO) <Topile)
work
overcoiti]"(B1) (B2) "I

4
worked example : LRU paging

LastRecently used : Cache wlk slots stores the most recently
(LRU) requested k pages

hit if user requests for a page in the cache, fault , otherwise
16

-

claim : LRU is k-competitive
Ci. l. OPT faults =1 times every time LRU faults k times)

key insight : (pigeonhole principle)
LRU has k faultsi -
>[k+1 distinct pages requested
-> OPT has at least 1 fault

