
Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Recitation 2
Amortized Analysis & Competitive Analysis

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Agenda

Amortized Analysis
Overview
Methods: Aggregate, Accounting, and Potential
Worked Example: Dynamic List (On the Board)

Competitive Analysis (On the Board)
Worked Example: Competitive Scheduling
Worked Example: LRU Paging

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Amortized Analysis

• Idea: Tight upper bound for a sequence of operations

• Not interested in the cost of any individual operation, but total cost of entire
sequence of operations

• Not to be confused with average-case analysis

• Methods for analysis: Aggregate, Accounting, Potential

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Stacks and Queues

• Stack — last in, first out (LIFO), comprising two cost-1 operations:

• PUSH() adds to the top of the stack

• POP() removes and returns the item at the top of the stack

x x

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Stacks and Queues

• Stack — last in, first out (LIFO), comprising two cost-1 operations:

• PUSH() adds to the top of the stack

• POP() removes and returns the item at the top of the stack

• Queue — first in, first out (FIFO):

• ENQUEUE() add to the back of the queue

• DEQUEUE() removes and returns the item at the front of the queue

x x

x x

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Queue Using Two Stacks

Implement a queue given two stacks and :

• ENQUEUE(): Push onto

• DEQUEUE():

• If is empty, transfer all elements from to (pop + push)

• Pop from

Cost? ENQUEUE is , DEQUEUE is in the worst case:
Hence, we can naively bound the cost of operations by .

s1 s2

x x s1

s2 s1 s2

s2

O(1) O(n)
n O(n2)

Worked Example

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Aggregate Method

Idea:

• Aggregate the cost of operations

• Divide the total cost by to achieve amortized cost

Let’s observe any mixture of ENQUEUE and DEQUEUE operations:

• Every element added to the queue incurs at most four cost-1 operations:

• PUSH to , POP + PUSH to move from to , POP from

• At most elements are added, as # of DEQUEUEs # of ENQUEUEs

• Hence, total cost of operations is , so amortized cost is

n

n

n

s1 s1 s2 s2

n ≤

n O(n) O(1)

Worked Example

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Accounting Method

Idea: “Pay in advance” extra coins during low-cost operations to “subsidize” the cost
of later expensive ones.

• Let be the cost of operation

• Assign an amortized cost to each operation such that

Note: It is possible we assign , however, a nonnegative balance must maintained
for any sequence of operations.

ci i

̂ci ∑
i

ci ≤ ∑
i

̂ci

̂ci < ci

Definition

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Accounting Method

Claim: Assign an amortized cost of coins to ENQUEUE. Then the amortized cost
for DEQUEUE is coins.

• coin pays for the initial push of element to

• coins used if is ever moved from to

• coin used if is ever popped from due to a DEQUEUE

DEQUEUE is considered free due to sufficient credit stored.

We pay at most coins per operation, so the amortized cost is .

4
0

1 x s1

2 x s1 s2

1 x s2

4 O(1)

Worked Example

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Potential Method

Idea: The potential function assigns each state of the data structure a nonnegative
value representing prepaid work, i.e., the “potential energy” at that state.

Amortized Cost:

• For operation

• For operations

Require but small. Why?

For simplicity: Set and ensure for all .

Φ

i ̂ci = ci + Φi − Φi−1 = ci + ΔΦi−1

k
k

∑
i

̂ci =
k

∑
i

ci + Φi − Φi−1 =
k

∑
i

ci + Φk − Φ0

Φi − Φ0 ≥ 0

Φ0 = 0 Φi ≥ 0 i

Definition

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Potential Method

Intuition: Choose to increase during inexpensive operations (i.e., prepay) and drop
during expensive ones (i.e., cash in).

For simulating a queue using stacks:

• Let refer to immediately following operation

• Define
- How does the intuition relate?
- Is this a valid potential function?

Φ

s(i)
1 s1 i

Φi = 2 |s(i)
1 |

Worked Example

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Potential Method

ENQUEUE:

• Actual Cost: for one push onto

• Change in Potential: since increases by

• Amortized Cost:

ci = 1 s1

ΔΦi = 2 |s1 | 1

̂ci = ci + ΔΦ1 = 1 + 2 = 3

Worked Example

http://rebeccayelin.github.io/6.1220-SP25

Rebecca Lin rebeccayelin.github.io/6.1220-SP25

Potential Method

DEQUEUE:

Case 1: is not empty

• Actual Cost: for a pop from

• since is unchanged

• Amortized Cost:

s2

ci = 1 s2

ΔΦi = 0 |s1 |

̂ci = 1 + 0 = 1

Worked Example

Case 2: is empty

• Actual Cost:
- pops from
- pushes to
- pop from

• since becomes empty

• Amortized Cost:

s2

ci = 2 |s1 | + 1
|s1 | s1

|s1 | s2

1 s2

ΔΦi = − 2 |s1 | s1

̂ci = (2 |s1 | + 1) − 2 |s1 | = 1

http://rebeccayelin.github.io/6.1220-SP25

