Recitation 2 Amortized Analysis & Competitive Analysis

Rebecca Lin

Amortized Analysis Overview Methods: Aggregate, Accounting, and Potential Worked Example: Dynamic List (On the Board) Competitive Analysis (On the Board) **Worked Example: Competitive Scheduling Worked Example: LRU Paging**

Rebecca Lin

Agenda

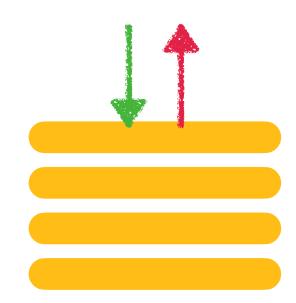
Amortized Analysis

- Idea: Tight upper bound for a sequence of operations
 - Not interested in the cost of any individual operation, but total cost of entire sequence of operations
 - Not to be confused with average-case analysis
- Methods for analysis: Aggregate, Accounting, Potential

Stacks and Queues

- **Stack** last in, first out (LIFO), comprising two **cost-1** operations:
 - PUSH(*x*) adds *x* to the top of the stack
 - POP() removes and returns the item at the top of the stack

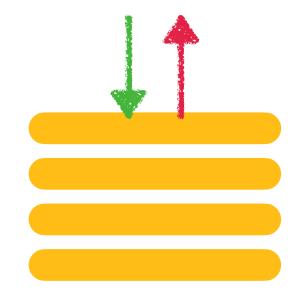
Rebecca Lin



Stacks and Queues

- **Stack** last in, first out (LIFO), comprising two **cost-1** operations:
 - PUSH(*x*) adds *x* to the top of the stack
 - POP() removes and returns the item at the top of the stack
- **Queue** first in, first out (FIFO):
 - ENQUEUE(*x*) add *x* to the back of the queue
 - **DEQUEUE()** removes and returns the item at the front of the queue

Rebecca Lin



Queue Using Two Stacks **Worked Example**

Implement a queue given two stacks s_1 and s_2 :

- ENQUEUE(x): Push x onto s_1
- DEQUEUE():
 - If s_2 is empty, transfer all elements from s_1 to s_2 (pop + push)
 - Pop from s_2

Cost? ENQUEUE is O(1), DEQUEUE is O(n) in the worst case: Hence, we can naively bound the cost of *n* operations by $O(n^2)$.

Rebecca Lin

Idea:

- Aggregate the cost of *n* operations
- Divide the total cost by *n* to achieve amortized cost

Let's observe any mixture of *n* ENQUEUE and DEQUEUE operations:

- Every element added to the queue incurs at most **four** cost-1 operations:
 - PUSH to s_1 , POP + PUSH to move from s_1 to s_2 , POP from s_2
- At most *n* elements are added, as # of DEQUEUEs \leq # of ENQUEUEs
- Hence, total cost of *n* operations is O(n), so amortized cost is O(1)

Rebecca Lin

Aggregate Method **Worked Example**

Accounting Method Definition

Idea: "Pay in advance" extra coins during low-cost operations to "subsidize" the cost of later expensive ones.

- Let c_i be the cost of operation i
- Assign an amortized cost \hat{c}_i to each operation such that $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$

for any sequence of operations.

Rebecca Lin

Note: It is possible we assign $\hat{c}_i < c_i$, however, a nonnegative balance must maintained



Accounting Method **Worked Example**

for DEQUEUE is 0 coins.

- 1 coin pays for the initial push of element x to s_1
- 2 coins used if x is ever moved from s_1 to s_2
- 1 coin used if x is ever popped from s_2 due to a DEQUEUE

DEQUEUE is considered free due to sufficient credit stored.

We pay at most 4 coins per operation, so the amortized cost is O(1).

Rebecca Lin

Claim: Assign an amortized cost of 4 coins to ENQUEUE. Then the amortized cost

Potential Method Definition

Idea: The potential function Φ assigns each state of the data structure a nonnegative value representing prepaid work, i.e., the "potential energy" at that state.

Amortized Cost:

- For operation *i*
- For k operations

 $\hat{c}_i = c_i + \Phi_i$ $\sum_{i=1}^{k} \hat{c}_{i} = \sum_{i=1}^{k} \frac{1}{2}$

Require $\Phi_i - \Phi_0 \ge 0$ but small. Why?

For simplicity: Set $\Phi_0 = 0$ and ensure $\Phi_i \ge 0$ for all *i*.

Rebecca Lin

$$c_{i} - \Phi_{i-1} = c_{i} + \Delta \Phi_{i-1}$$

 $c_{i} + \Phi_{i} - \Phi_{i-1} = \sum_{i}^{k} c_{i} + \Phi_{k} - \Phi_{0}$

Potential Method Worked Example

Intuition: Choose Φ to increase during inexpensive operations (i.e., prepay) and drop during expensive ones (i.e., cash in).

For simulating a queue using stacks:

- Let $s_1^{(i)}$ refer to s_1 immediately following operation *i*
- Define $\Phi_i = 2 |s_1^{(i)}|$
 - How does the intuition relate?
 - Is this a valid potential function?

Potential Method Worked Example

ENQUEUE:

- Actual Cost: $c_i = 1$ for one push onto s_1
- Change in Potential: $\Delta \Phi_i = 2$ since $|s_1|$ increases by 1
- Amortized Cost: $\hat{c}_i = c_i + \Delta \Phi_1 = 1 + 2 = 3$

Rebecca Lin

Potential Method Worked Example

DEQUEUE:

Case 1: s_2 is not empty

- Actual Cost: $c_i = 1$ for a pop from s_2
- $\Delta \Phi_i = 0$ since $|s_1|$ is unchanged
- Amortized Cost: $\hat{c}_i = 1 + 0 = 1$

Rebecca Lin

- **Case 2:** s_2 is empty
- Actual Cost: $c_i = 2 |s_1| + 1$
 - $|s_1|$ pops from s_1
 - $|s_1|$ pushes to s_2
 - 1 pop from s_2
- $\Delta \Phi_i = -2|s_1|$ since s_1 becomes empty
- Amortized Cost:
 - $\hat{c}_i = (2|s_1| + 1) 2|s_1| = 1$

