Recitation 2

Amortized Analysis & Competitive Analysis

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Agenda

Amortized Analysis

Overview
Methods: Aggregate, Accounting, and Potential
Worked Example: Dynamic List (On the Board)

Competitive Analysis (On the Board)

Worked Example: Competitive Scheduling
Worked Example: LRU Paging

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Amortized Analysis

* Idea: Tight upper bound for a sequence of operations

* Not interested in the cost of any individual operation, but total cost of entire
sequence of operations

* Not to be confused with average-case analysis

* Methods for analysis: Aggregate, Accounting, Potential

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Stacks and Queues

* Stack — last in, first out (LIFO), comprising two cost-1 operations: T

. adds x to the top of the stack

* POP() removes and returns the item at the top of the stack

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Stacks and Queues

* Stack — last in, first out (LIFO), comprising two cost-1 operations: T

. adds x to the top of the stack

* POP() removes and returns the item at the top of the stack

* Queue — firstin, first out (FIFO):

. add x to the back of the queue

* DEQUEUE() removes and returns the item at the front of the queue i

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Queue Using Two Stacks

Worked Example

Implement a queue given two stacks s; and s,:

* ENQUEUE(x): Push x onto s,
 DEQUEUEY():
» If 5, is empty, transfer all elements from s, to s, (pop + push)

» Pop from s,

Cost? ENQUEUE is O(1), DEQUEUE is O(n) in the worst case:

Hence, we can naively bound the cost of n operations by O(17).

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Aggregate Method

Worked Example
ldea:
* Aggregate the cost of n operations

* Divide the total cost by n to achieve amortized cost

Let’s observe any mixture of 7 ENQUEUE and DEQUEUE operations:

* Every element added to the queue incurs at most four cost-1 operations:
* PUSH to s, POP + PUSH to move from s, to s,, POP from s,
* At most n elements are added, as # of DEQUEUESs < # of ENQUEUESs

* Hence, total cost of n operations is O(n), so amortized cost is O(1)

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Accounting Method
Definition
Idea: “Pay in advance” extra coins during low-cost operations to “subsidize” the cost
of later expensive ones.

* Let ¢, be the cost of operation i

» Assign an amortized cost ¢; to each operation such that Z c; < Z C;

l l

Note: It is possible we assign ¢; < c¢;, however, a nonnegative balance must maintained
for any sequence of operations.

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Accounting Method

Worked Example

Claim: Assign an amortized cost of 4 coins to ENQUEUE. Then the amortized cost
for DEQUEUE is O coins.

* 1 coin pays for the initial push of element x to s,
« 2 coins used if x is ever moved from s, to s,

o 1 coin used if x is ever popped from s, due to a DEQUEUE

DEQUEUE is considered free due to sufficient credit stored.

We pay at most 4 coins per operation, so the amortized cost is O(1).

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Potential Method

Definition

ldea: The potential function ® assigns each state of the data structure a nonnegative
value representing prepaid work, i.e., the “potential energy” at that state.

Amortized Cost:

» For operation i C.=¢,+P. -0, =c+AD,_,
k k k
» For k operations Z C; = Z c;+P,—P_ | = Z c;+ D, — D,

Require @, — @y > 0 but small. Why?
For simplicity: Set @, = 0 and ensure ®, > 0 for all i.

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Potential Method

Worked Example

Intuition: Choose @ to increase during inexpensive operations (i.e., prepay) and drop
during expensive ones (i.e., cash in).

For simulating a queue using stacks:

e Let Sl(i) refer to s, immediately following operation i

» Define ®, = 2| sl(i)\
- How does the intuition relate?

- Is this a valid potential function?

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Potential Method

Worked Example

ENQUEUE:

» Actual Cost: ¢; = 1 for one push onto s,
» Change in Potential: A®. = 2 since | s, | increases by 1

* Amortized Cost: ¢, =¢;+ AD, =1+2 =3

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

Potential Method

Worked Example
DEQUEUE: Case 2: 5, Is empty
Case 1: 5, Is not empty * Actual Cost:¢; =2|s,| + 1
» Actual Cost: ¢; = 1 for a pop from s, - | s;| pops from s,
» AD. = Osince |s;| is unchanged " |s;| pushesto s,

 Amortized Cost: 61’ =14+0=1 - 1 pop from 32

» AD. = —2]|s,| since s; becomes empty
* Amortized Cost:
C;=QC2|s|+D =25 =1

Rebecca Lin rebeccayelin.github.i0/6.1220-SP25

http://rebeccayelin.github.io/6.1220-SP25

