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Abstract. We analyze the problem of folding one polyhedron, viewed as a metric graph of
its edges, into the shape of another, similar to 1D origami. We find such foldings between
all pairs of Platonic solids and prove corresponding lower bounds, establishing the optimal
scale factor when restricted to integers.

1 Introduction

Viewing a polyhedron as a metric graph (graph with specified edge lengths) [1], when can we fold
it into another polyhedron, in the sense of 1D origami where lengths must be preserved and we
view multiple overlapping layers as one? More formally:

Problem 1. Given two metric spaces A and B, find an isometric covering of B from A, that is,
a surjective map m : A → B such that, for every path p in A, the arc length of p in A equals the
arc length of m(p) in B. Figure 1 shows an example.
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Fig. 1. Example folding.

To ensure this is always possible, we can scale the lengths in A by a
constant scale factor α (in Figure 1, α = 7/4 for unit edge lengths),
and aim to minimize α. First we prove this problem NP-complete and
hard to approximate within a constant factor (Section 2). Then we an-
alyze optimal mappings between pairs of Platonic solids, finding map-
pings to establish upper bounds (Section 3) and proving lower bounds
(Section 4). Table 1 summarizes these results, which are tight if re-
stricted to integral α.

Table 1. Our integer-tight lower and upper bounds, given as intervals, on the minimum scale factor for
folding one Platonic solid (row) into another (column), both with unit edge lengths.

↱ Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Tetrahedron [1, 1] [2+1/3, 29/10] (2, 2+1/2] [6+1/3, 6+2/3] [5+2/3, 5+7/8]
Cube (1/2, 5/6] [1, 1] (1, 1+1/2] [2+1/2, 3] [2+1/2, 3]
Octahedron (1/2, 1] [1+1/12, 1+1/2] [1, 1] [3+1/12, 4] [2+1/2, 3]
Dodecahedron (1/5, 3/5] (2/5, 4/5] (2/5, 3/4] [1, 1] (1, 1+1/3]
Icosahedron (1/5, 1] (1, 1+1/3] (2/5, 1] [1+2/15, 2] [1, 1]

2 Hardness

Theorem 1 (Inapproximability). Given two metric planar graphs G1 and G2, deciding whether
G1 can be folded onto G2 via an isometric covering is NP-complete, and the optimal scale factor
OPT of mapping G1 onto G2 is NP-hard to approximate within a factor of < 1.5.
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3 Platonic Upper Bounds (Foldings)

To achieve the upper bounds reported in Table 1, we developed initial solutions by observing
inscriptions of one polyhedron in another (Figure 2a), and then further optimized these solutions
through manual rerouting and automated search. For the latter, we combined two brute-force
paradigms—logic programming and integer linear programming—along with local improvement
techniques.
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Fig. 2. (a) Mapping an icosahedron to a dodecahedron via an inscription. Routing edges via subdivisions
of (b) an octahedron to a cube with α = 3/2, and (c) a tetrahedron to an octahedron with α = 5/2.
Mappings are not drawn to scale.

4 Lower Bounds

For any pair of polyhedra, a näıve lower bound on the optimal scale factor is immediate: every
target edge needs to be covered by a source edge, thus OPT ≥ perimeter of target graph

perimeter of source graph . However, we
significantly improve this lower bound with the following observations:

– Each source vertex is mapped to either a vertex or a point along an edge of the target;
– Each source edge is routed to a path in the target;
– The scale factor is the maximum length of the routed target paths.

Let ns be the number of vertices in the source graph, and let ot be the number of vertices of
odd degree in the target. Then:

Lemma 1. In any solution, at least ot−ns

2 target edges must be fully doubly covered. If at least one
source vertex is placed in the middle of a target edge, then the bound becomes strict.

The following result forms the basis of our lower bounds:

Theorem 2 (Lower Bound). OPT ≥ perimeter of target graph+lengths of doubly covered target edges
perimeter of source graph .

5 Future Work

Next steps include tightening the bounds in Table 1 and developing heuristics for folding general
polyhedra. We also wish to strengthen the hardness proof to apply to polyhedral graphs, which
requires more connectivity than our current construction. Finally, we plan to develop solutions that
permit continuous folding motions, which are required in the case of rigid polyhedral linkages.
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