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The Threading Problem
A threading  of  is a closed walk through  that visits each edge at least once, 
induces connected “junction graphs” at each vertex, and has no “U-turns”. 

T G G

G = (V, E)

count      of visits to xuv = # uv

length |T | = ∑
uv∈E

xuv
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Our Results
Algorithms: 

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Bounds:

• An optimal threading has length at least 2m − n

• There exist graphs with optimal threadings of length 2m − O(1)
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• Reformulate the Threading problem in terms of local constraints of a threading

• Show a linear-time algorithm to construct a global threading from local solutions

• Give an algorithm to compute local solutions via reduction to perfect matching
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Theorem. We can construct a threading  of  from a local threading  of  such 
that  visits edge  exactly  times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps: 

1. Compute a connected junction graph at every vertex given a local threading

2. Find a threading from the resulting collection of junction graphs
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Step 2: Obtain a Threading

union of junction graphs forbidden pattern Euler tour 
[Bosboom et al. 2020]
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Lemma. Any threading must have length at least . 2m − n

Proof.    ∑
uv∈E

xuv =
1
2 ∑

v∈V
∑

u∈N(v)

xuv ≥
1
2 ∑

v∈V

2(d(v) − 1) = 2m − n

handshaking
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For a perfect threading, (C4) holds an an equality:  

(C4*)  for all ∑
u∈N(v)
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Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:  

(C4*)  for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma.  is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v
How do we distribute the remaining  
units amongst the edges incident to ?

d(v) − 2
v

1 1

1

1

1

1

1 1
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disjoint edges 

uv ∈ E
duv := min{d(u), d(v)} − 2
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Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

Step 2: For each vertex , 
create  vertices

v
d(v) − 2

HG



Step 3: Form bicliques at 
each junction

Approach: Construct a graph  that has a perfect matching if and only if, for every 
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Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

HG

(  of blue “ ”s not in ), where  is a perfect matching of xuv := 1 + # uv M M ⊆ E(H) H

Theorem.  has a perfect threading if and only if  has a perfect matching. G H

1

1

2

1

1
1
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2
2
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Next Steps
• Developer tighter bounds dependent on properties of the input graph

• Devise a more efficient solution to the general problem

• Investigate angular metric graph threading






