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The Threading Problem

A threading 7T of G is a closed walk through G that visits each edge at least once,

G=(V,E)
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induces connected “junction graphs” at each vertex,
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and has no “U-turns”.
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The Threading Problem

count Xx,k = # of visits to uv

length |T| = ) x,

uvek
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double
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| 7| =2m

7| = 12

Goal: Minimize|T| = Z X
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Our Results

Algorithms:

o Polynomial-time algorithm to compute the edge counts of an optimal threading
e Polynomial-time algorithm to construct an optimal threading from edge counts
o Improved algorithms for special cases

Bounds:
e An optimal threading has length at least 2m — n

o There exist graphs with optimal threadings of length 2m — O(1)
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Overview of Talk

o Reformulate the Threading problem in terms of local constraints of a threading
e Show a linear-time algorithm to construct a global threading from local solutions

e Give an algorithm to compute local solutions via reduction to perfect matching
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(C4) Z X, > 2(d(v) = 1) forallv eV 1

u€N(V)  enough times to form a spanning tree. Z x,=4<6 X
UEN(V)
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LLocal Constraints of a Threading

A local threading of G consists of counts {x,,} satisfying constraints

(C1) x,,=>1foralluv € E
visits each edge at least once,

(C2) Z x,, =0 (mod 2)forallveV

u€N(V)  entering and exiting each vertex

(C3) Z X,, =X, foralluv € E

weNW\{u} without U-turning,

(C4) ) X, >2(dv)—DforallveV

u€N(Y)  enough times to form a spanning tree.
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Theorem. We can construct a threading T of G from a local threading {x,,} of G such
that T visits edge uv exactly x,,, times. Hence | T| = Z X
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Game Plan. Constructive proof in two steps:
1. Compute a connected junction graph at every vertex given a local threading

2. Find a threading from the resulting collection of junction graphs
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1 *
Consider the case where 2 X, @ 2(d(v) = 1) ...

UeEN(V)

* Refer to paper for generalization to >



Step 1: Construct a Connected Junction Graph

2
O
Given a local threading {x,, }:
] @ ® |
Consider the case where z X, @ 2(div) — 1) ...
UeEN(V)
@
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Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
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Step 2: Obtain a Threading

f—.\

forbidden pattern Euler tour

union of junction graphs [Bosboom et al. 2020]
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Lemma. Any threading must have length at least 2m — n.

Proof. quv=%2 > xuVZ%ZZ(d(V)—I)?Zm—n

uvek veV ueNQW) veV handshaking
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Bounds

Lemma. Any threading must have length at least 2m — n.

Definition. A perfect threading is a graph threading of length 2m — n.

P ~ e ~
/ N / \
/ \ / A
| \ | ]
\ / \ /
\ / \ /
\\/ \//
TN 7S
/ A y \
/ \ / \
( ) i \
\ / \ /
\ / \ /
\\// \\//
//\ /_\\
/ \ / \
/ \ / \
| \ | ]
\ / \ /
N / \ /



Finding a Local Threading via Perfect Matching
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For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

* Refer to paper for generalization to graphs without perfect threadings
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Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds an an equality:

(C47) Z x,=2dv)—1)forallveV

How do we distribute the remaining d(v) — 2
units amongst the edges incident to v?



Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.
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Approach: Construct a graph 1 that has a perfect matching if and only if, for every
vertex v, we can distribute units among its incident edges.
G H

\
A

Step 2: For each vertex v,

®
o0 .
\ create vertices
@




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G

Step 3: Form bicliques at
each junction




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H
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Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H

N
‘Q
N\

KA\

x. =1 4+ (#of blue “uv’s notin M), where M C E(H) is a perfect matching of H
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Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H

A :
)
\\

A

\\‘/
47\

I

v,
A

x,, =1 4+ (# of blue "uv”s notin M), where M C E(H) is a perfect matching of H

Theorem. G has a perfect threading if and only if H has a perfect matching,
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Next Steps

o Developer tighter bounds dependent on properties of the input graph
o Devise a more efficient solution to the general problem

o Investigate angular metric graph threading









