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The Threading Problem
A threading  of  is a closed walk through  that visits each edge at least once, 
induces connected “junction graphs” at each vertex, and has no “U-turns”. 

T G G

G = (V, E)

count      of visits to xuv = # uv

length |T | = ∑
uv∈E

xuv
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Our Results
Algorithms: 

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Bounds:

• An optimal threading has length at least 2m − n

• There exist graphs with optimal threadings of length 2m − O(1)
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• Reformulate the Threading problem in terms of local constraints of a threading

• Show a linear-time algorithm to construct a global threading from local solutions

• Give an algorithm to compute local solutions via reduction to perfect matching



Local Constraints of a Threading
(C1)       for all  

(C2)    for all  

(C3)  for all  

(C4)    for all 

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V ∑
u∈N(v)

xuv = 5

2

11

1

∑
u∈N(v)

xuv = 5



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

2

11

1

?

∑
u∈N(v)

xuv = 5



A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

5

11

1

 < 3 5



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

5

11

1

? ?

 < 3 5



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

1

11

1

∑
u∈N(v)

xuv = 4 < 6



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

1

11

1

∑
u∈N(v)

xuv = 4 < 6



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

∑
u∈N(v)

xuv = 6

2

11

2



Local Constraints of a Threading
A local threading of  consists of counts  satisfying constraints 

(C1)       for all  
                         visits each edge at least once, 

(C2)    for all  

                         entering and exiting each vertex  

(C3)  for all  

                         without U-turning,  

(C4)    for all  

                         enough times to form a spanning tree. 

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V



Theorem. We can construct a threading  of  from a local threading  of  such 
that  visits edge  exactly  times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv



Theorem. We can construct a threading  of  from a local threading  of  such 
that  visits edge  exactly  times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps: 



Theorem. We can construct a threading  of  from a local threading  of  such 
that  visits edge  exactly  times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps: 

1. Compute a connected junction graph at every vertex given a local threading



Theorem. We can construct a threading  of  from a local threading  of  such 
that  visits edge  exactly  times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps: 

1. Compute a connected junction graph at every vertex given a local threading

2. Find a threading from the resulting collection of junction graphs
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Step 2: Obtain a Threading

union of junction graphs forbidden paern Euler tour 
[Bosboom et al. 2020]
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Lemma. Any threading must have length at least . 2m − n

Proof.    ∑
uv∈E

xuv =
1
2 ∑

v∈V
∑

u∈N(v)

xuv ≥
1
2 ∑

v∈V

2(d(v) − 1) = 2m − n

handshaking
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For a perfect threading, (C4) holds an an equality:  
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v

1 1

1

1

1

1

1 1

How do we distribute  units 
amongst the edges incident to ?

2(d(v) − 1)
v



Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:  

(C4*)  for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma.  is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v
How do we distribute the remaining  
units amongst the edges incident to ?

d(v) − 2
v

1 1

1

1

1

1

1 1



Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.   

H
v d(v) − 2



Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

G



Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

Step 1: For each , create 
 

disjoint edges 

uv ∈ E
duv := min{d(u), d(v)} − 2
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Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

Step 2: For each vertex , 
create  vertices

v
d(v) − 2

HG



Step 3: Form bicliques at 
each junction
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vertex , we can distribute  units among its incident edges.  
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Approach: Construct a graph  that has a perfect matching if and only if, for every 
vertex , we can distribute  units among its incident edges.  

H
v d(v) − 2

HG

(  of blue “ ”s not in ), where  is a perfect matching of xuv := 1 + # uv M M ⊆ E(H) H

Theorem.  has a perfect threading if and only if  has a perfect matching. G H

1

1

2

1

1
1

12

2
2
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Next Steps
• Developer tighter bounds dependent on properties of the input graph

• Devise a more efficient solution to the general problem

• Investigate angular metric graph threading






