Graph Threading

Erik Demaine, Yael Kirkpatrick, and Rebecca Lin

BBl Massac husetts

Institute of
ITCS 2024 I“ll etiute of



beadwork from Beady
[lgarashi et al. 2012]



https://dl.acm.org/doi/abs/10.1145/2185520.2185545

Xﬁ
\xm

\\; ,,\\a v\\, N

g

beadwork from Beady

[lgarashi et al. 2012]

a himmeli by Eija Koski


https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli

beadwork from Beady
[lgarashi et al. 2012]

a deployable dome by Alison Martin



https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://twitter.com/alisonmartin57/status/1461643652946698240

— N

SUBNIRNIAN

|
; |
=

XN
|

beadwork from Beady
[lgarashi et al. 2012]

a himmeli by Eija Koski

N TAT AT or (T LY ) PR T AR v R NG €T S : . PR )
?_wi;. "‘, L% .1\.;'.;: \ A_ . \- - ‘f)f’%“;., .,' ’ s l.‘." . : 5\{” J > J ,J. :
REop e ) ‘ 2 A re® .. 3 2 ,‘¢¢ ‘ R 3 Sl RATN f s S,
- b ; 3 A A A XN AN - 5 ﬁ»‘ 265 A ‘.l- ' :“?.J 7”',‘ r‘ * '. !s oy 'c' -~ “\ g ";‘”.‘ : e $ ol 4
LY 5.4 o’ - N R . ; . h e 5 V4T 4 N i . ol ' ¥
: 3 ; B b | e\ % o A A AT Ry ’ ¥ A ,? Aok | 3 — U - -
"\\)", o\ 22 T \J NE Sy ™ \ - Ay ol N "..3»; FEELA T A 4 a ‘1 ,f\‘. * L "‘4 ¥ ‘\kq‘i 4 ‘3/‘ o { - % -‘.:.'
e K - 2 ~ ' » R L. S o ot O S W a1 M) Car sl ALY p z ¢ >
\ AP SEANCEY UF A TR ot # FOA 2B 2wk FONSNEe i T Sabatly SRR o Kl O B, 50 l‘ e,
a:I.. ‘PN e 7 s L A A L o Lo e = v PR it 5 R '.‘ \‘\ T‘ B , i\ “5 \¢*¥
2 VPSS \ : 1 ' A -
s: s \iThaN \ A\ -i. ¥ .:'x: \ ","-‘ ) - s P e+ — g - T“ ' 4 20 Jﬂ + - -~
J\‘t:“( '\ ,‘q"i—:"‘.' : ! £ =77 y .
0 K ! 4
» A ]

i .
L b f‘ AN ,\ y
ol N - ) :‘ A ol N
W SR T 7 ey B e el : LIRS
St e TR 3 . i L
v ) WA\ B P s = Ong o =1 | -
\v‘ w\*‘h.‘ ¢ 'A . f ‘ T [/
8 £ Fagh t nYye - - - y ¥ oL
S -/ ¥ : r o : el T . 3V
’

a push puppet-inspired deployable structure by Lin and Tachi

a deployable dome by Alison Martin


https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://twitter.com/alisonmartin57/status/1461643652946698240
https://twitter.com/rebeccayelin/status/1749193197031469102

How do we efficiently thread a string
through a collection of tubes so that
the tubes connect as intended when
the string is pulled taut?

a tetrahedron by Alison Martin



https://twitter.com/alisonmartin57/status/1461643652946698240

How do we efficiently thread a string
through a collection of tubes so that
the tubes connect as intended when
the string is pulled taut?

a tetrahedron by Alison Martin



https://twitter.com/alisonmartin57/status/1461643652946698240

The Threading Problem



The Threading Problem

G=(V,E)



The Threading Problem

G=(V,E)



The Threading Problem

A threading 7T of G is a closed walk through G that visits each edge at least once,

G=(V,E)



The Threading Problem

induces connected “junction graphs” at each vertex,




The Threading Problem

and has no “U-turns”.




The Threading Problem




The Threading Problem

count Xx,k = # of visits to uv




The Threading Problem

count Xx,k = # of visits to uv

length |T| = ) x,

uvek




double
threading

| 7| =2m

/‘?\

7| = 12



double
threading

| 7| =2m

/’\

7| = 12



double
threading

| 7| =2m

7| = 12

Goal: Minimize|T| = Z X

uy

uvek




Our Results



Our Results

Algorithms:



Our Results

Algorithms:

o Polynomial-time algorithm to compute the edge counts of an optimal threading



Our Results

Algorithms:
o Polynomial-time algorithm to compute the edge counts of an optimal threading

e Polynomial-time algorithm to construct an optimal threading from edge counts



Our Results

Algorithms:
o Polynomial-time algorithm to compute the edge counts of an optimal threading
e Polynomial-time algorithm to construct an optimal threading from edge counts

o Improved algorithms for special cases



Our Results

Algorithms:

o Polynomial-time algorithm to compute the edge counts of an optimal threading
e Polynomial-time algorithm to construct an optimal threading from edge counts
o Improved algorithms for special cases

Bounds:



Our Results

Algorithms:

o Polynomial-time algorithm to compute the edge counts of an optimal threading
e Polynomial-time algorithm to construct an optimal threading from edge counts
o Improved algorithms for special cases

Bounds:

e An optimal threading has length at least 2m — n



Our Results

Algorithms:

o Polynomial-time algorithm to compute the edge counts of an optimal threading
e Polynomial-time algorithm to construct an optimal threading from edge counts
o Improved algorithms for special cases

Bounds:
e An optimal threading has length at least 2m — n

o There exist graphs with optimal threadings of length 2m — O(1)



Overview of Talk



Overview of Talk

o Reformulate the Threading problem in terms of local constraints of a threading



Overview of Talk

o Reformulate the Threading problem in terms of local constraints of a threading

e Show a linear-time algorithm to construct a global threading from local solutions



Overview of Talk

o Reformulate the Threading problem in terms of local constraints of a threading
e Show a linear-time algorithm to construct a global threading from local solutions

e Give an algorithm to compute local solutions via reduction to perfect matching



LLocal Constraints of a Threading



LLocal Constraints of a Threading

A local threading of G consists of counts {x,,} satisfying constraints



LLocal Constraints of a Threading

(C1) x,,=>1foralluv € E
visits each edge at least once,



LLocal Constraints of a Threading

(C2) Z x,, =0 (mod 2)forallveV

u€N(V)  entering and exiting each vertex



LLocal Constraints of a Threading

(C2) Z x,, =0 (mod 2)forallveV

u€N()  entering and exiting each vertex




LLocal Constraints of a Threading

(C2) Z @E 0 (mod 2)forallv eV

u€N()  entering and exiting each vertex




LLocal Constraints of a Threading

(C2) Z @E 0 (mod 2)forallv eV

u€N()  entering and exiting each vertex




LLocal Constraints of a Threading

(C3) Z X,, =X, foralluv € E

weNW\{u} without U-turning,



LLocal Constraints of a Threading

(C3) Z X, =X, foralluv € E

weNW\{u} \without U-turning,




LLocal Constraints of a Threading

(C3) Z X,, =X, foralluv € E

weNW\{u} \without U-turning,




LLocal Constraints of a Threading

(C4) ) X, >2(dv)—DforallveV

u€N(V)  enough times to form a spanning tree.



LLocal Constraints of a Threading

| pams |

(C4) Z X, > 2(d(v) = 1) forallv eV 1

u€N(V)  enough times to form a spanning tree. Z x,=4<6 X
UEN(V)




LLocal Constraints of a Threading

|
[ ]
4
L 4
*
’0
- 1
-
1 *~—
*
4
4
s
L]

(C4) Z X, > 2(d(v) = 1) forallv eV 1

u€N(V)  enough times to form a spanning tree. Z x,=4<6 X
UEN(V)



LLocal Constraints of a Threading

(C4) ) X, >2(dv)—DforallveV

u€N(V)  enough times to form a spanning tree.




LLocal Constraints of a Threading

A local threading of G consists of counts {x,,} satisfying constraints

(C1) x,,=>1foralluv € E
visits each edge at least once,

(C2) Z x,, =0 (mod 2)forallveV

u€N(V)  entering and exiting each vertex

(C3) Z X,, =X, foralluv € E

weNW\{u} without U-turning,

(C4) ) X, >2(dv)—DforallveV

u€N(Y)  enough times to form a spanning tree.



Theorem. We can construct a threading T of G from a local threading {x,,} of G such
that T visits edge uv exactly x,,, times. Hence | T| = Z X

uy*
uvek



Theorem. We can construct a threading T of G from a local threading {x,,} of G such
that T visits edge uv exactly x,,, times. Hence | T| = Z X

uy*
uvek

Game Plan. Constructive proof in two steps:



Theorem. We can construct a threading T of G from a local threading {x,,} of G such
that T visits edge uv exactly x,,, times. Hence | T| = Z X

uy*
uvek

Game Plan. Constructive proof in two steps:

1. Compute a connected junction graph at every vertex given a local threading



Theorem. We can construct a threading T of G from a local threading {x,,} of G such
that T visits edge uv exactly x,,, times. Hence | T| = Z X

uy*
uvek

Game Plan. Constructive proof in two steps:
1. Compute a connected junction graph at every vertex given a local threading

2. Find a threading from the resulting collection of junction graphs



Step 1: Construct a Connected Junction Graph




Step 1: Construct a Connected Junction Graph

- Given a local threading {x,, }:




Step 1: Construct a Connected Junction Graph

- Given a local threading {x,, }:
1




Step 1: Construct a Connected Junction Graph

- Given a local threading {x,, }:
1 *
Consider the case where 2 X, @ 2(d(v) = 1) ...

UeEN(V)

* Refer to paper for generalization to >



Step 1: Construct a Connected Junction Graph

2
O
Given a local threading {x,, }:
] @ ® |
Consider the case where z X, @ 2(div) — 1) ...
UeEN(V)
@



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1




Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

2
. Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1
Recursion:
1 @ ® 1
@



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Recursion:

] ) @ ® |
. Choose@and X; = |



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

2
Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1
Recursion:
1 ® |
e Choosex; > landx; =1
e Connect vertices 1 and J
O



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Recursion:

e Choosex; > landx; =1

e Connect vertices 1 and J

® o Setx; =x;— 1, and x; no longer exists



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.

O
=1
Recursion:
® (1]
e Choosex; > landx; =1
e Connect vertices 1 and J
® o Setx; =x;— 1, and x; no longer exists



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Recursion:

e Choosex; > landx; =1

e Connect vertices 1 and J

o Setx; =x;— 1, and x; no longer exists



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Recursion:

e Choosex; > landx; =1

e Connect vertices 1 and J

® o Setx; =x;— 1, and x; no longer exists



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Base Case: Create a one-edge path since d = 2



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1

Base Case: Create a one-edge path since d = 2



Step 1: Construct a Connected Junction Graph

Lemma. We can construct a d-vertex tree with degrees

Xy, ..., Xx; > 1 satisfying Zx =2(d—-1) in O(d) time.
=1







..III-.'

-
-
>
-
.
-
.
.
| ]
1
L]
L
.
L
.
.
*
*
.
Ld
- = = g
- L J
. -~
L -
-
-
-
-
>
.
.
.
’
.
L]
L
L
L
L
.
*
*
L
- '.



Step 2: Obtain a Threading

f—.\

forbidden pattern Euler tour

union of junction graphs [Bosboom et al. 2020]



Bounds



Bounds

Recall: An optimal threading has at most length 2m.



Bounds

Recall: An optimal threading has at most length 2m.




Bounds

Lemma. Any threading must have length at least 2m — n.



Bounds

Lemma. Any threading must have length at least 2m — n.

Proof. quv=%2 > xuVZ%ZZ(d(V)—I)?Zm—n

uvek veV ueNQW) veV handshaking



Bounds

Lemma. Any threading must have length at least 2m — n.

Definition. A perfect threading is a graph threading of length 2m — n.



Bounds

Lemma. Any threading must have length at least 2m — n.

Definition. A perfect threading is a graph threading of length 2m — n.

P ~ e ~
/ N / \
/ \ / A
| \ | ]
\ / \ /
\ / \ /
\\/ \//
TN 7S
/ A y \
/ \ / \
( ) i \
\ / \ /
\ / \ /
\\// \\//
//\ /_\\
/ \ / \
/ \ / \
| \ | ]
\ / \ /
N / \ /



Finding a Local Threading via Perfect Matching



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

* Refer to paper for generalization to graphs without perfect threadings



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV




Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

Proof.  (C2): Z X,y (mod 2) = 2(d(v) = 1) (mod 2) =0 v
UEN(v) (C*4)



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

Proof.  (C2): Z X,y (mod 2) = 2(d(v) = 1) (mod 2) =0 v
UEN(v) (C4%)

(C3): Rewrite (C4") asx,, + ) X, =2(d() = 1)
weNW)\{x,,}



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

Proof.  (C2): Z X,y (mod 2) = 2(d(v) = 1) (mod 2) =0 v
UEN(v) (C4%)

(C3): Rewrite (C4¥) as x,,,, Z X, \= 2(d(v) —1)
weNW\{x,,}

> d(v) — 1 by (C1)



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds with an equality:

(C47) Z x,=2dv)—1)forallveV

Proof.  (C2): Z X,y (mod 2) = 2(d(v) = 1) (mod 2) =0 v
UEN(v) (C4%)

(C3): Rewrite (C4*) as x,, D xn=2dv-1) Vv
weNW)\{x,,}

> d(v) — 1 by (C1)



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds an an equality:

(C47) Z x,=2dv)—1)forallveV




Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds an an equality:

(C47) Z x,=2dv)—1)forallveV

How do we distribute 2(d(v) — 1) units
amongst the edges incident to v?



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds an an equality:

(C47) Z x,=2dv)—1)forallveV

How do we distribute 2(d(v) — 1) units
amongst the edges incident to v?



Finding a Local Threading via Perfect Matching

For a perfect threading, (C4) holds an an equality:

(C47) Z x,=2dv)—1)forallveV

How do we distribute the remaining d(v) — 2
units amongst the edges incident to v?



Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.



Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G

H
@ o
~ \ /
0 @
\ Step 1: For each uv € E, create

— d, = min{d(u),d(v)} — 2

fisioit o
" “/ \ | isjoint edges




Approach: Construct a graph 1 that has a perfect matching if and only if, for every
vertex v, we can distribute units among its incident edges.
G H

\
A

Step 2: For each vertex v,

®
o0 .
\ create vertices
@




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G

Step 3: Form bicliques at
each junction




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H
R
47\
[

x. =1 4+ (#of blue “uv’s notin M), where M C E(H) is a perfect matching of H

uy




Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H

N
‘Q
N\

KA\

x. =1 4+ (#of blue “uv’s notin M), where M C E(H) is a perfect matching of H

uy



Approach: Construct a graph H that has a perfect matching if and only if, for every
vertex v, we can distribute d(v) — 2 units among its incident edges.

G H

A :
)
\\

A

\\‘/
47\

I

v,
A

x,, =1 4+ (# of blue "uv”s notin M), where M C E(H) is a perfect matching of H

Theorem. G has a perfect threading if and only if H has a perfect matching,




Next Steps



Next Steps

o Developer tighter bounds dependent on properties of the input graph



Next Steps

o Developer tighter bounds dependent on properties of the input graph

o Devise a more efficient solution to the general problem



Next Steps

o Developer tighter bounds dependent on properties of the input graph
o Devise a more efficient solution to the general problem

o Investigate angular metric graph threading









