
Graph Threading

ITCS 2024

Erik Demaine, Yael Kirkpatrick, and Rebecca Lin

beadwork from Beady
[Igarashi et al. 2012]

https://dl.acm.org/doi/abs/10.1145/2185520.2185545

beadwork from Beady
[Igarashi et al. 2012]

a himmeli by Eija Koski

https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli

beadwork from Beady
[Igarashi et al. 2012]

a himmeli by Eija Koski

a deployable dome by Alison Martin

https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://twitter.com/alisonmartin57/status/1461643652946698240

beadwork from Beady
[Igarashi et al. 2012]

a himmeli by Eija Koski

a deployable dome by Alison Martin

a push puppet-inspired deployable structure by Lin and Tachi

https://dl.acm.org/doi/abs/10.1145/2185520.2185545
https://folklife.si.edu/magazine/eija-koski-finnish-himmeli
https://twitter.com/alisonmartin57/status/1461643652946698240
https://twitter.com/rebeccayelin/status/1749193197031469102

a tetrahedron by Alison Martin

How do we efficiently thread a string
through a collection of tubes so that
the tubes connect as intended when
the string is pulled taut?

https://twitter.com/alisonmartin57/status/1461643652946698240

a tetrahedron by Alison Martin

How do we efficiently thread a string
through a collection of tubes so that
the tubes connect as intended when
the string is pulled taut?

https://twitter.com/alisonmartin57/status/1461643652946698240

The Threading Problem

The Threading Problem

G = (V, E)

The Threading Problem

G = (V, E)

The Threading Problem
A threading of is a closed walk through that visits each edge at least once, T G G

G = (V, E)

The Threading Problem
A threading of is a closed walk through that visits each edge at least once,
induces connected “junction graphs” at each vertex,

T G G

G = (V, E)

The Threading Problem
A threading of is a closed walk through that visits each edge at least once,
induces connected “junction graphs” at each vertex, and has no “U-turns”.

T G G

G = (V, E)

The Threading Problem
A threading of is a closed walk through that visits each edge at least once,
induces connected “junction graphs” at each vertex, and has no “U-turns”.

T G G

G = (V, E)

The Threading Problem
A threading of is a closed walk through that visits each edge at least once,
induces connected “junction graphs” at each vertex, and has no “U-turns”.

T G G

G = (V, E)

count of visits to xuv = # uv

The Threading Problem
A threading of is a closed walk through that visits each edge at least once,
induces connected “junction graphs” at each vertex, and has no “U-turns”.

T G G

G = (V, E)

count of visits to xuv = # uv

length |T | = ∑
uv∈E

xuv

|T | = 12

double
threading
|T | = 2m

|T | = 8|T | = 12

double
threading
|T | = 2m

Goal: Minimize |T | = ∑
uv∈E

xuv

|T | = 12 |T | = 8

double
threading
|T | = 2m

Our Results

Our Results
Algorithms:

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Bounds:

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Bounds:

• An optimal threading has length at least 2m − n

Our Results
Algorithms:

• Polynomial-time algorithm to compute the edge counts of an optimal threading

• Polynomial-time algorithm to construct an optimal threading from edge counts

• Improved algorithms for special cases

Bounds:

• An optimal threading has length at least 2m − n

• There exist graphs with optimal threadings of length 2m − O(1)

Overview of Talk

Overview of Talk
• Reformulate the Threading problem in terms of local constraints of a threading

Overview of Talk
• Reformulate the Threading problem in terms of local constraints of a threading

• Show a linear-time algorithm to construct a global threading from local solutions

Overview of Talk
• Reformulate the Threading problem in terms of local constraints of a threading

• Show a linear-time algorithm to construct a global threading from local solutions

• Give an algorithm to compute local solutions via reduction to perfect matching

Local Constraints of a Threading
(C1) for all

(C2) for all

(C3) for all

(C4) for all

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V ∑
u∈N(v)

xuv = 5

2

11

1

∑
u∈N(v)

xuv = 5

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

2

11

1

?

∑
u∈N(v)

xuv = 5

A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

5

11

1

 < 3 5

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

5

11

1

? ?

 < 3 5

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

1

11

1

∑
u∈N(v)

xuv = 4 < 6

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

1

11

1

∑
u∈N(v)

xuv = 4 < 6

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

∑
u∈N(v)

xuv = 6

2

11

2

Local Constraints of a Threading
A local threading of consists of counts satisfying constraints

(C1) for all
 visits each edge at least once,

(C2) for all

 entering and exiting each vertex

(C3) for all

 without U-turning,

(C4) for all

 enough times to form a spanning tree.

G {xuv}

xuv ≥ 1 uv ∈ E

∑
u∈N(v)

xuv ≡ 0 (mod 2) v ∈ V

∑
w∈N(v)∖{u}

xwv ≥ xuv uv ∈ E

∑
u∈N(v)

xuv ≥ 2(d(v) − 1) v ∈ V

Theorem. We can construct a threading of from a local threading of such
that visits edge exactly times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Theorem. We can construct a threading of from a local threading of such
that visits edge exactly times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps:

Theorem. We can construct a threading of from a local threading of such
that visits edge exactly times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps:

1. Compute a connected junction graph at every vertex given a local threading

Theorem. We can construct a threading of from a local threading of such
that visits edge exactly times. Hence .

T G {xuv} G
T uv xuv |T | = ∑

uv∈E

xuv

Game Plan. Constructive proof in two steps:

1. Compute a connected junction graph at every vertex given a local threading

2. Find a threading from the resulting collection of junction graphs

Step 1: Construct a Connected Junction Graph

Step 1: Construct a Connected Junction Graph

Given a local threading :

Consider the case where …

{ }

∑
u∈N(v)

xuv = 2(d(v) − 1)
xuv

Step 1: Construct a Connected Junction Graph

2

11

2

Given a local threading :

Consider the case where …

{ }

∑
u∈N(v)

xuv = 2(d(v) − 1)
xuv

Step 1: Construct a Connected Junction Graph

Given a local threading :

Consider the case where …

{ }

∑
u∈N(v)

xuv = 2(d(v) − 1)
xuv

2

11

2
* Refer to paper for generalization to ≥

*

Step 1: Construct a Connected Junction Graph

2

11

2

Given a local threading :

Consider the case where …

{ }

∑
u∈N(v)

xuv = 2(d(v) − 1)
xuv

Step 1: Construct a Connected Junction Graph

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)
2

11

2

Step 1: Construct a Connected Junction Graph

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

2

11

2

Step 1: Construct a Connected Junction Graph

2

11

2

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and xi > 1 xj = 1

Step 1: Construct a Connected Junction Graph

2

11

2

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

xi > 1 xj = 1
i j

Step 1: Construct a Connected Junction Graph

1

1

2

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

xi > 1 xj = 1
i j

xi = xi − 1 xj

Step 1: Construct a Connected Junction Graph

1

1

2

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

xi > 1 xj = 1
i j

xi = xi − 1 xj

Step 1: Construct a Connected Junction Graph

1

1

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

xi > 1 xj = 1
i j

xi = xi − 1 xj

Step 1: Construct a Connected Junction Graph

1

1

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

xi > 1 xj = 1
i j

xi = xi − 1 xj

Step 1: Construct a Connected Junction Graph

1

1

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

Base Case: Create a one-edge path since

xi > 1 xj = 1
i j

xi = xi − 1 xj

d = 2

Step 1: Construct a Connected Junction Graph

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

Base Case: Create a one-edge path since

xi > 1 xj = 1
i j

xi = xi − 1 xj

d = 2

Step 1: Construct a Connected Junction Graph

2

11

2

Lemma. We can construct a -vertex tree with degrees

 satisfying in time.

d

x1, …, xd ≥ 1
d

∑
i=1

xi = 2(d − 1) O(d)

Recursion:

• Choose and

• Connect vertices and

• Set , and no longer exists

Base Case: Create a one-edge path since

xi > 1 xj = 1
i j

xi = xi − 1 xj

d = 2

1 1

1 1

2

2

1 1

1 1

2

2

Step 2: Obtain a Threading

union of junction graphs forbidden paern Euler tour
[Bosboom et al. 2020]

Bounds

Bounds

Recall: An optimal threading has at most length . 2m

Bounds

Recall: An optimal threading has at most length . 2m

Bounds

Lemma. Any threading must have length at least . 2m − n

Bounds

Lemma. Any threading must have length at least . 2m − n

Proof. ∑
uv∈E

xuv =
1
2 ∑

v∈V
∑

u∈N(v)

xuv ≥
1
2 ∑

v∈V

2(d(v) − 1) = 2m − n

handshaking

Bounds

Lemma. Any threading must have length at least . 2m − n

Definition. A perfect threading is a graph threading of length . 2m − n

Bounds

Lemma. Any threading must have length at least . 2m − n

Definition. A perfect threading is a graph threading of length . 2m − n

Finding a Local Threading via Perfect Matching

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

* Refer to paper for generalization to graphs without perfect threadings

*

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

Proof. (C2): ∑
u∈N(v)

xuv (mod 2) = 2(d(v) − 1) (mod 2) ≡ 0

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

(C*4)

Proof. (C2):

 Proof. (C3): Rewrite (C4*) as

∑
u∈N(v)

xuv (mod 2) = 2(d(v) − 1) (mod 2) ≡ 0

xuv + ∑
w∈N(v)∖{xwv}

xwv = 2(d(v) − 1)

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

(C4*)

Proof. (C2):

 Proof. (C3): Rewrite (C4*) as

∑
u∈N(v)

xuv (mod 2) = 2(d(v) − 1) (mod 2) ≡ 0

xuv + ∑
w∈N(v)∖{xwv}

xwv = 2(d(v) − 1)

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

(C4*)

 by (C1)≥ d(v) − 1

Proof. (C2):

 Proof. (C3): Rewrite (C4*) as

∑
u∈N(v)

xuv (mod 2) = 2(d(v) − 1) (mod 2) ≡ 0

xuv + ∑
w∈N(v)∖{xwv}

xwv = 2(d(v) − 1)

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds with an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

(C4*)

 by (C1)≥ d(v) − 1

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v
How do we distribute units
amongst the edges incident to ?

2(d(v) − 1)
v

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v

1 1

1

1

1

1

1 1

How do we distribute units
amongst the edges incident to ?

2(d(v) − 1)
v

Finding a Local Threading via Perfect Matching
For a perfect threading, (C4) holds an an equality:

(C4*) for all ∑
u∈N(v)

xuv = 2(d(v) − 1) v ∈ V

Lemma. is a a perfect threading if and only if it satisfies (C1) and (C4*). {xuv}

v
How do we distribute the remaining
units amongst the edges incident to ?

d(v) − 2
v

1 1

1

1

1

1

1 1

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

G

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

Step 1: For each , create

disjoint edges

uv ∈ E
duv := min{d(u), d(v)} − 2

HG

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

Step 2: For each vertex ,
create vertices

v
d(v) − 2

HG

Step 3: Form bicliques at
each junction

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

HG

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

HG

(of blue “ ”s not in), where is a perfect matching of xuv := 1 + # uv M M ⊆ E(H) H

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

HG

(of blue “ ”s not in), where is a perfect matching of xuv := 1 + # uv M M ⊆ E(H) H

1

1

2

1

1
1

12

2
2

Approach: Construct a graph that has a perfect matching if and only if, for every
vertex , we can distribute units among its incident edges.

H
v d(v) − 2

HG

(of blue “ ”s not in), where is a perfect matching of xuv := 1 + # uv M M ⊆ E(H) H

Theorem. has a perfect threading if and only if has a perfect matching. G H

1

1

2

1

1
1

12

2
2

Next Steps

Next Steps
• Developer tighter bounds dependent on properties of the input graph

Next Steps
• Developer tighter bounds dependent on properties of the input graph

• Devise a more efficient solution to the general problem

Next Steps
• Developer tighter bounds dependent on properties of the input graph

• Devise a more efficient solution to the general problem

• Investigate angular metric graph threading

